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Digital Signal Processing

By a signal we mean any variable that carries or contains some kind of
information that can be conveyed, displayed or manipulated.

Examples of signals of particular interest are:

- speech, is encountered in telephony, radio, and everyday life



Biomedical signals:- (heart signals, brain signals)

 Sound and music,  as reproduced by the compact disc 

player, Video and image, 

Radar signals, which are used to determine the range 

and bearing of distant targets 



Significant features of ECG waveform

 A typical scalar electrocardiographic lead is shown in Fig. 1,

where the significant features of the waveform are the P, Q, R,

S, and T waves, the duration of each wave, and certain time

intervals such as the P-R, S-T, and Q-T intervals.
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•Most of the signals in our environment are analog such 

as sound, temperature and light 

•To processes these signals with a computer, we must: 

1. convert the analog signals into electrical signals, e.g., using a 

transducer such as a microphone to convert sound into 

electrical signal 

2. digitize these signals, or convert them from analog to digital, 

using an ADC (Analog to Digital Converter)



Steps in Digital Signal Processing 

•Analog input signal is filtered to be a band-limited signal by an

input low pass filter

•Signal is then sampled and quantized by an ADC

•Digital signal is processed by a digital circuit, often a computer

or a digital signal processor

•Processed digital signal is then converted back to an analog

signal by a DAC

•The resulting step waveform is converted to a smooth signal by

a reconstruction filter called an anti-imaging filter



Why do we need DSPs 

 DSP operations require a lot of multiplying and adding

operations of the form:

A = B*C + D

 This simple equation involves a multiply and an add operation

 The multiply instruction of a GPP is very slow compared with

the add instruction

 Motorola 68000 microprocessor uses

10 clock cycles for add

74 clock cycles for multiply



Digital signal processors can perform the multiply

and the add operation in just one clock cycle

Most DSPs have a specialized instruction that causes

them to multiply, add and save the result in a single

cycle

This instruction is called a MAC (Multiply, Add, and

Accumulate)



Attraction of DSP comes from key advantages such as :

 Guaranteed accuracy: (accuracy is only determined by the number of bits
used)

 Perfect Reproducibility: Identical performance from unit to unit
ie. A digital recording can be copied or reproduced several times with

no
loss in signal quality

 No drift in performance with temperature and age

 Uses advances in semiconductor technology to achieve:
(i) smaller size 
(ii) lower cost 
(iii) low power consumption 
(iv) higher operating speed 

 Greater flexibility:  Reprogrammable , no need to modify the hardware 
 Superior performance 

ie. linear phase response can be achieved 
complex adaptive filtering becomes possible



Disadvantages of DSP 

 Speed and Cost  

DSP techniques are limited to signals with relatively low
bandwidths

DSP designs can be expensive, especially when large bandwidth
signals are involved.

ADC or DACs are either to expensive or do not have sufficient
resolution for wide bandwidth applications.

 DSP designs can be time consuming plus need the necessary
resources

(software etc)

 Finite word-length problems

If only a limited number of bits is used due to economic
considerations

serious degradation in system performance may result.



 The use of finite precision arithmetic makes it necessary to 

quantize filter calculations by rounding or truncation. 

 Round off noise is that error in the filter output that results 

from rounding or truncating calculations within the filter.

 As the name implies, this error looks like low-level noise at 

the filter output



Application Areas

1.Image Processing      

2.Instrumentation/Control

3.Speech/Audio

4.Military

5. Telecommunications

6.Biomedical

7.Consumer applications



Introduction

to 

Signal And Systems



1. Continuous time signals (CT signals)

2.  Discrete time signals (DT signals) 

3. Elementary Signals

4. Classification of CT and DT 

5. Description of continuous time and 

discrete time systems



Signal: 
A Function of one or more independent Variables Which 

contains some information is called as signal

For Eg. Music, Speech, Picture & Video

Signal    

1. One Dimensional

2. Multi Dimensional

Classification Of Signals

1. Continuous Time Signal

2. Discrete Time Signal



Signal Process Systems

analog

system
signal output

continuous-time signal continuous-time signal

discrete-

time

system
signal output

discrete-time signal discrete-time signal

digital

system
signal output

digital signal digital signal



Representation by a Sequence

• Discrete-time system theory

– Concerned with processing signals that are 
represented by sequences.
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Elementary Signals

• Unit Impulse Signal

• Unit Step Signal

• Exponential Signal

• Sinusoidal Signal



Important Signals 

• Unit-sample sequence (n)
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 Sometime call (n) 

 a discrete-time impulse; or

 an impulse



Important Signals

• Unit-step sequence u(n)
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Important Signals

• Real exponential sequence
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Important Signal

• Sinusoidal sequence
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Classification of Signals

• Deterministic and Random 

• Periodic and Non Periodic

• Even and Odd Signals

• Energy and Power Signal



Important Signal

• A sequence x(n) is defined to be periodic 

with period N if 
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Energy of a Sequence

• Energy of a sequence is defined by
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Operations on Sequences

• Sum

• Product

• Multiplication

• Shift
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Systems

Set of Elementary or Functional blocks

which are connected together and

produces an output in response to an

input signal. The response or output

of the system depends upon transfer

function of the system



Classification of Systems

1. Dynamic and Static

2. Time Variant and invariant

3. Linear and non- linear

4. Causal and non Causal

5. Stable and un- stable



Systems

T [ ]x(n) y(n)=T[x(n)]

Mathematically modeled 

as a unique 

transformation or 



Linear Systems

T [ ]x(n) y(n)=T[x(n)]
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Shift-Invariant Systems

x(n) y(n)=T[x(n)]
T [ ]

x(n-k) y(n-k)

x(n) y(n)

x(n-1) y(n-1)

x(n-2) y(n-2)



Shift-Invariant Systems

x(n) y(n)=T[x(n)]
T [ ]

x(n-k) y(n-k)

x(n) y(n)

x(n-1) y(n-1)

x(n-2) y(n-2)



Impulse Response

T [ ]

x(n)=(n) h(n)=T[(n)]

0 0

00



Characterize a System

h(n)x(n) x(n)*h(n)



Key DSP Operations

1. Convolution

2. Correlation 

3. Digital Filtering

4. Discrete Transformation

5. Modulation 



Convolution 

Convolution is one of the most frequently used

operations in DSP. Specially in digital filtering

applications where two finite and causal sequences

x[n] and h[n] of lengths N1 and N2 are convolved
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where, n = 0,1,…….,(M-1) and M = N1 + N2 -1

This is a multiply and accumulate operation and DSP device

manufacturers have developed signal processors that perform

this action.



Correlation 

There are two forms of correlation :

1.  Auto-correlation 

2.  Cross-correlation 









For sampled signal (i.e. sampled signal), the

autocorrelation is defined as either biased or unbiased

defined as follows:



Correlation coefficient for discrete signals

Normalized version of the cross-covarience is known as 

the correlation coefficient and is defined as below
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Where,  rxy(n) is an estimate of the cross-covarience



The cross-covarience is defined as
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Fast Fourier Transforms



Discrete Fourier Transform

• The DFT pair was given as

• Baseline for computational complexity: 

– Each DFT coefficient requires

• N complex multiplications

• N-1 complex additions

– All N DFT coefficients require

• N2 complex multiplications

• N(N-1) complex additions

• Complexity in terms of real operations

• 4N2 real multiplications

• 2N(N-1) real additions

• Most fast methods are based on symmetry properties

– Conjugate symmetry

– Periodicity in n and k
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The Goertzel Algorithm

• Makes use of the periodicity

• Multiply DFT equation with this factor

• Define with this definition and using x[n]=0 for n<0 and n>N-1

• X[k] can be viewed as the output of a filter to the input x[n]

– Impulse response of filter: 

– X[k] is the output of the filter at time n=N
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The Goertzel Filter

• Goertzel Filter

• Computational complexity

– 4N real multiplications

– 2N real additions

– Slightly less efficient than the direct method

• Multiply both numerator and denominator 
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Second Order Goertzel Filter

• Second order Goertzel Filter

• Complexity for one DFT coefficient

– Poles: 2N real multiplications and 4N real additions 

– Zeros: Need to be implement only once

• 4 real multiplications and 4 real additions

• Complexity for all DFT coefficients

– Each pole is used for two DFT coefficients 

• Approximately N2 real multiplications and 2N2 real additions

• Do not need to evaluate all N DFT coefficients

– Goertzel Algorithm is more efficient than FFT if 

• less than M DFT coefficients are needed

• M < log2N
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Decimation-In-Time FFT Algorithms

• Makes use of both symmetry and periodicity

• Consider special case of N an integer power of 2

• Separate x[n] into two sequence of length N/2

– Even indexed samples in the first sequence

– Odd indexed samples in the other sequence

• Substitute variables n=2r for n even and n=2r+1 for odd

• G[k] and H[k] are the N/2-point DFT’s of each subsequence
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Decimation In Time

• 8-point DFT example using 

decimation-in-time

• Two N/2-point DFTs

– 2(N/2)2 complex multiplications

– 2(N/2)2 complex additions

• Combining the DFT outputs

– N complex multiplications

– N complex additions

• Total complexity

– N2/2+N complex multiplications

– N2/2+N complex additions

– More efficient than direct DFT

• Repeat same process 

– Divide N/2-point DFTs into 

– Two N/4-point DFTs

– Combine outputs



Decimation In Time Cont’d

• After two steps of 

decimation in time

• Repeat until we’re left with 

two-point DFT’s



Decimation-In-Time FFT Algorithm

• Final flow graph for 8-point decimation in time

• Complexity:

– Nlog2N complex multiplications and additions



Butterfly Computation

• Flow graph constitutes of butterflies

• We can implement each butterfly with one multiplication

• Final complexity for decimation-in-time FFT

– (N/2)log2N complex multiplications and additions



In-Place Computation

• Decimation-in-time flow graphs require two sets of registers

– Input and output for each stage

• Note the arrangement of the input indices

– Bit reversed indexing
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Decimation-In-Frequency FFT Algorithm
• The DFT equation

• Split the DFT equation into even and odd frequency indexes

• Substitute variables to get

• Similarly for odd-numbered frequencies
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Decimation-In-Frequency FFT Algorithm

• Final flow graph for 8-point decimation in frequency


